Design of Dynamic Neural Networks to Forecast Short-term Railway Passenger Demand

نویسندگان

  • Tsung-Hsien TSAI
  • Chi-Kang LEE
  • Chien-Hung WEI
چکیده

This paper develops two dynamic neural network structures to forecast short-term railway passenger demand. The first neural network structure follows the idea of autoregressive model in time series forecasting and forms a nonlinear autoregressive model. In addition, two experiments are tested to eliminate redundant inputs and training samples. The second neural network structure extends the first model and integrates internal recurrent to pursue a parsimonious structure. The result of the first model shows the proposed nonlinear autoregressive model can attain promising performance and most cases are fewer than 20% of Mean Absolute Percentage Error. The result of the second model shows the proposed internal recurrent neural network can perform as well as the first model does and keep the model parsimonious. Short-term forecasting is essential for short-term operational planning, such as seat allocation. The proposed network structures can be applied to solve this issue with promising performance and parsimonious structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Artificial Neural Networks Approach to Forecast Short-term Railway Passenger Demand

This paper experiences a three-phrase back-propagation neural network approach to forecast short-term railway passenger demand. The first phase involves the selection of variables, the size of training data set, and the modification of stochastic outliers, under a specific origin-destination (O/D) pair of a given train service. In the second phase, in order to verify the robustness of developed...

متن کامل

Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks

Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passen...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...

متن کامل

Demand-oriented timetable design for urban rail transit under stochastic demand

In the context of public transportation system, improving the service quality and robustness through minimizing the average passengers waiting time is a real challenge. This study provides robust stochastic programming models for train timetabling problem in urban rail transit systems. The objective is minimization of the weighted summation of the expected cost of passenger waiting time, its va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005